Amorphous silicon passivated contacts for diffused junction silicon solar cells
نویسندگان
چکیده
Articles you may be interested in Compositional study of defects in microcrystalline silicon solar cells using spectral decomposition in the scanning transmission electron microscope Appl. Influence of back contact roughness on light trapping and plasmonic losses of randomly textured amorphous silicon thin film solar cells Appl. Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler Appl. Surface passivation properties of boron-doped plasma-enhanced chemical vapor deposited hydrogenated amorphous silicon films on p-type crystalline Si substrates Appl. Carrier recombination at the metal contacts is a major obstacle in the development of high-performance crystalline silicon homojunction solar cells. To address this issue, we insert thin intrinsic hydrogenated amorphous silicon [a-Si:H(i)] passivating films between the dopant-diffused silicon surface and aluminum contacts. We find that with increasing a-Si:H(i) interlayer thickness (from 0 to 16 nm) the recombination loss at metal-contacted phosphorus (n þ) and boron (p þ) diffused surfaces decreases by factors of $25 and $10, respectively. Conversely, the contact resistivity increases in both cases before saturating to still acceptable values of $ 50 mX cm 2 for n þ and $100 mX cm 2 for p þ surfaces. Carrier transport towards the contacts likely occurs by a combination of carrier tunneling and aluminum spiking through the a-Si:H(i) layer, as supported by scanning transmission electron microscopy–energy dispersive x-ray maps. We explain the superior contact selectivity obtained on n þ surfaces by more favorable band offsets and capture cross section ratios of recombination centers at the c-Si/a-Si:H(i) interface. V C 2014 AIP Publishing LLC.
منابع مشابه
A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon Solar Cells
Advances in the efficiency of crystalline silicon (c-Si) photovoltaic (PV) devices above the long-held record efficiency value of 25% have all come from solar cell architectures with passivated contacts fabricated on n-type silicon.[1] The most successful devices to date have a silicon heterojunction (SHJ) cell structure, featuring a thin intrinsic amorphous silicon (a-Si) film that passivates ...
متن کاملDevelopment of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD
In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing par...
متن کاملEffect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics
Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...
متن کاملSurface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide
متن کامل
N-i-p Micromorph Solar Cells on Aluminium Substrates
The first successful deposition of 'micromorph' silicon tandem solar cells of the n-i-p-n-i-p configuration is reported. In order to implement the 'micromorph' solar cell concept, four key elements had to be prepared: First, the deposition of mid-gap, intrinsic microcrystalline silicon (μc-Si:H) by the 'gas purifier method', second, the amorphous silicon (a-Si:H) n-i-p single junction solar cel...
متن کامل